Abstract: A finite-dimensional Hilbert space is usually described in terms of an orthonormal basis, but in certain approaches or applications a description in terms of a finite overcomplete system of vectors, called a finite tight frame, may offer some advantages. The use of a finite tight frame may lead to a simpler description of the symmetry transformations, to a simpler and more symmetric form of invariants or to the possibility to define new mathematical objects with physical meaning, particularly in regard with the notion of a quantization of a finite set. I will present in this talk the frame quantization of a finite set, its probabilistic aspects, and possible applications.